Scaling photosynthetic light-use efficiency from canopies to landscapes

Thomas Hilker¹ Nicholas Coops² Forrest Hall¹ T Andrew Black²

¹NASA Goddard Space Flight Center, Greenbelt, MD, USA

²University of British Columbia We Vancouver, BC, Canada

Remote sensing of Photosynthesis

Monteith (1972,1977):

$$GPP = \varepsilon \times f_{PAR} \times PAR$$

Light-use efficiency term ε

Photosynthetic Energy Pathways

Hilker et al., Science of the Total Environment (2008)

Associated changes in reflectance

Effects of Structure on Remote Sensing of Photosynthesis

I. Physical effects

moving sun

moving observer

Figure: D. Culvenor

Hilker et al., Journal of Geophysical Research(2008)

Hilker et al., Computers and Electronics in Agriculture (2007) Hilker et al. Instrumentation Science and Technology (2010)

Amspec data

Hilker et al. Instrumentation Science and Technology (2010)

Combining Structure and Function: Inferring Photosynthetic Efficiency

Hilker et al., Remote Sensing of Environment (2008)

RS of Photosynthetic Efficiency

Hilker et al., Remote Sensing of Environment (2008,2009)

Calculating shadow fractions (α_s)

SOA DF-49

Hilker et al., Remote Sensing of Environment (2010)

Calculating shadow fractions (α_s)

Hilker et al., Tree Physiology (2008)

Hilker et al., Remote Sensing of Environment (2010)

Scaling Up: CHRIS/Proba Satellite

Figure: UK Space Agency

Hall, Hilker et al., Remote Sensing of Environment (in press)

Scaling Up

Obtaining PRI and Shadow fractions from CHRIS/Proba

Reflectance for given overpass

Corresponding Shadow fractions from spectral endmembers

Structural Differences of Test Sites

Satellite-derived Photosynthesis

Satellite-derived Photosynthesis

Conclusions

- 1. Consecration of structure is essential for robust stand level sensing of function
- 2. Structure can be obtained from multi-angle spectral observations
- 3. $\Delta PRI \Delta \alpha_s^{-1}$ can be used to infer instantaneous ϵ across different biomes
- 4. This relationship can be upscaled to space using an adequate sensor

PhotosynSat: Photosynthesis from Space

Thank you!! For your attention! Questions?

- Dominic Lessard, UBC, LFS Thomas Hilker, PhD • NASA Goddard Space Flight Center uniosof BCic SFiences Branch Code 614.4 Greenbelt, MD 20771, USA 🕸: +1 301.286.8597
- For Sharing Data1and. Gencepts:
- Mike Wulder, NRCAN, CFS. 3743
- Alexei Lyapustin, MASA MiseFonasa.gov
- Caroline Nichol, UED
- Alan Barr, NRCAN

Integrating Remote Sensing and Carbon Models

Carbo Europe: Long-term monitoring of ecosystem change

24

Eddy covariance/AMSPEC footprint

Hilker et al., Journal of Geophysical Research(2008) Flux footprint model: Chen et al. 2008

AMSPEC system

26

Sensitivity to shadow fractions

Stand level ε=const

NDRI PRI 0.8 0.09 0.8 0.09 0.08 0.08 0.7 0.7 0.07 0.07 0.6 0.6 0.06 0.06 0.5 0.5 Shadow fraction Shadow fraction C.05 C.0 Reflectance Reflectance 0.05 0.4 0.4 0.04 0.3 0.3 0.03 0.03 0.2 0.2 0.02 0.02 0.1 0.1 0.01 0.01 0.0 0.0 0.00 0.00 50 50 100 150 250 100 150 200 250 0 200 300 0 300 Azimuth between sun and observer (°) Azimuth between sun and observer (°) Shadow Fraction = $\rho 531 + \rho 570 + Abs(PRI)$ Shadow fraction • Abs(NDRI[570,MODIS13]) • p570 pMODIS13

> 27 Hall et al., 2008, RSE

Conclusions for spaceborne PRI mission

A satellite design comparable to MODIS can only work when correcting directional effects from the ground (for instance using an AMSPEC)

ε=ε₁ ε=ε₂ ε=ε₃

Conclusions for spaceborne PRI mission

 Along-track sensor observes PRI from multiple angles for constant ε
Instantaneous ε can be inferred from ΔPRI Δα_c⁻¹

$\varepsilon = \varepsilon_1 = \text{const}$

Concept validation: CHRIS Proba

Operator: ESA (European Space Agency) Date of Launch: 22 October 2001 Orbit Height: 615 km Orbit Type: Sun-synchronous elliptical polar Repeat Cycle: approx. 7 days Resolution: 18 m (CHRIS) Swath Width: 14 km (CHRIS)

Concept validation: CHRIS Proba

	Cut-on	Cut-off	Central	
Band	Wavelength	Wavelength	Wavelength	Bandwidth
1	419.4	422	420.7	2.6
2	437	447.4	442	10.4
3	484.1	495.6	489.8	11.6
4	523.8	535.3	529.5	11.4
5	544.4	557.2	550.7	12.9
6	564	574.6	569.3	10.6
7	623.6	637.6	630.5	14
8	652.4	668.1	660.1	15.7
9	668.1	679	673.5	10.9
10	690.4	702.2	696.2	11.8
11	702.2	708.3	705.2	6.1
12	708.3	714.5	711.4	6.2
13	733.8	747.3	740.4	13.5
14	747.3	754.2	750.7	6.9
15	768.4	790.9	779.5	22.5
16	857	884.3	870.5	27.4
17	884.3	903.1	893.6	18.8
18	903.1	912.9	908	9.7

up to 5 acquisitions per overpass

12 overpasses (@4-5 angles) for the DF-49 site during 2009

(Mode 3)

For Assistance and Support with Amspec:

- Zoran Nesic, UBC LFS
- Dominic Lessard, UBC, LFS
- Rick Ketler, UBC, LFS
- Andrew Hum, UBC, LFS

For Sharing Data and Concepts:

- Mike Wulder, NRCAN, CFS
- Alexei Lyapustin, NASA GSFC